生活资讯
反函数公式 、反函数公式大全表格
2023-04-13 00:37  浏览:28

反函数怎么求 反函数的符号是什么

1、求反函数的方法:设函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个x使得g(y)=x,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数。由该定义可以很快得出函数f的定义域D和值域f(D)恰好就是反函数f-1的值域和定义域,并且f-1的反函数就是f,也就是说,函数f和f-1互为反函数。arccos计算公式:cos(arcsinx)=√(1-x^2)。

2、反函数的符号记为f -1(x),在中国的教材里,反三角函数记为arcsin、arccos等等,但是在欧美一些国家,sinx的反函数记为sin-1(x)。

反函数的公式有哪些?(要全)

一、判断反函数是否存在:

由反函数存在定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同:

1、先判读这个函数是否为单调函数,若非单调函数,则其反函数不存在。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点 x₁ 和 x₂ ,当 x₁x₂ 时,有 y₁y₂ ,则称y=f(x)在D上严格单调递增;当 x₁x₂ 时,有 y₁y₂,则称 y=f(x) 在D上严格单调递减。

2、再判断该函数与它的反函数在相应区间上单调性是否一致;

满足以上条件即反函数存在。

二、具体求法:

例如 求 y=x^2 的反函数。

x=±根号y,则 f(x) 的反函数是正负根号 x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。

扩展资料:

反函数存在定理

定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。

在证明这个定理之前先介绍函数的严格单调性。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1x2时,有y1y2,则称y=f(x)在D上严格单调递增;当x1x2时,有y1y2,则称y=f(x)在D上严格单调递减。

证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

而由于f的严格单增性,对D中任一x'x,都有y'y;任一x''x,都有y''y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。

任取f(D)中的两点y1和y2,设y1y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。

若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1y2矛盾。

因此x1x2,即当y1y2时,有f-1(y1)f-1(y2)。这就证明了反函数f-1也是严格单增的。

如果f在D上严格单减,证明类似。

参考资料来源:百度百科 - 反函数

反函数公式

1反函数没有具体的公式

2反函数有定义的.

就是由y=f(x)得x=g(y),则呈y=f(x)与x=g(y)互为反函数,

一般百x=g(y)记作y=f^(-1)(x).

反函数公式是什么?

反函数公式是x=f ^(-1)(y)。

反函数求法:

首先看这个函数是不是单调函数,如果不是则反函数不存在如果是单调函数,则只要把x和y互换,然后解出y即可。

例如y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。

反函数性质

(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。

(2)一个函数与它的反函数在相应区间上单调性一致。

(3)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。

奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

反函数公式的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于反函数公式大全表格、反函数公式的信息别忘了在本站进行查找喔。

发表评论
0评