二进制小数的位权为多少?
二进制小数的位权都是2的负整数次幂,即阶数为负数。
例如二进制小数0.101101b,转换成十进制小数:
0.101101b=1*2^(-1)+0*2^(-2)+1*2^(-3)+1*2^(-4)+0*2^(-5)+1*2^(-6)=0.703125d。
二进制数:
二进制数除法与十进制数除法很类似,可先从被除数的***位开始,将被除数(或中间余数)与除数相比较,若被除数(或中间余数)大于除数,则用被除数(或中间余数)减去除数,商为1,并得相减之后的中间余数,否则商为0。
再将被除数的下一位移下补充到中间余数的末位,重复以上过程,就可得到所要求的各位商数和最终的余数。
小数二进制怎么算?
口诀:整数二进制用数值乘以2的幂次依次相加,小数二进制用数值乘以2的负幂次然后依次相加。
1、整数二进制转换为十进制:首先将二进制数补齐位数,首位如果是0就代表是正整数,如果首位是1则代表是负整数。
若二进制补足位数后首位为1时,如下图所示,就需要先取反再换算:
2、小数的二进制转换为十进制:将二进制中的四位小数分别于下边(如下图所示)对应的值相乘后相加得到的值即为换算后的十进制。
扩展资料
二进制和十进制的区别:
1、用处不同:二进制主要用于计算机运算,十进制主要用于日常生活。
2、组成不同:二进制只有两个数字0和1来表示,十进制则是由0,1,2,3,4,5,6,7,8,9十个基本数字组成的数字系统。
3、规则不同:二进制进位规则是“逢二进一”,借位规则是“借一当二”。而十进制基于位进制和十进位两条原则,即所有的数字都用10个基本的符号表示,“满十进一”,同时同一个符号在不同位置上所表示的数值不同,符号的位置非常重要。基本符号是0到9十个数字。要表示这十个数的10倍,就将这些数字右移一位,用0补上空位。
二进制小数如何表示?
首先,给出一个任意实数,例如0.6,文字描述该过程如下:
将该数字乘以2,取出整数部分作为二进制表示的第1位;然后再将小数部分乘以2,将得到的整数部分作为二进制表示的第2位;以此类推,知道小数部分为0。
特殊情况: 小数部分出现循环,无法停止,则用有限的二进制位无法准确表示一个小数。
下面具体计算一下0.6的小数表示过程
0.6 * 2 = 1.2 ——————- 1
0.2 * 2 = 0.4 ——————- 0
0.4 * 2 = 0.8 ——————- 0
0.8 * 2 = 1.6 ——————- 1
0.6 * 2 = 1.2 ——————- 1
…………
可以发现在该计算中已经出现了循环,0.6用二进制表示为 1001 1001 1001 1001 ……
如果是10.6,那个10.6的完整二进制表示为 1010.100110011001……
扩展资料
小数的二进制计算
十进制小数转换成二进制小数采用“乘2取整,顺序排列”法。具体做法如下:
用2乘十进制小数,可以得出积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。然后把取出的整数部分按顺序排列起来。
先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
二进制后面的小数点怎么算?
二进制转十进制:
个位上的数字的次数是0,十位上的数字的次数是1,......,依次递增,而十分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。
如:
计算机中的十进制小数用二进制通常是用乘二取整法来获得的。
比如0.65换算成二进制就是:
0.65 × 2 = 1.3 取1,留下0.3继续乘二取整
0.3 × 2 = 0.6 取0, 留下0.6继续乘二取整
0.6 × 2 = 1.2 取1,留下0.2继续乘二取整
0.2 × 2 = 0.4 取0, 留下0.4继续乘二取整
0.4 × 2 = 0.8 取0, 留下0.8继续乘二取整
0.8 × 2 = 1.6 取1, 留下0.6继续乘二取整
0.6 × 2 = 1.2 取1,留下0.2继续乘二取整
.......
一直循环,直到达到精度限制才停止(所以,计算机保存的小数一般会有误差,所以在编程中,要想比较两个小数是否相等,只能比较某个精度范围内是否相等。)。这时,十进制的0.65,用二进制就可以表示为:0.1010011。
扩展资料:
1、二进制优点:
数字装置简单可靠,所用元件少;
只有两个数码0和1,因此它的每一位数都可用任何具有两个不同稳定状态的元件来表示;
基本运算规则简单,运算操作方便。
2、二进制缺点:
用二进制表示一个数时,位数多。因此实际使用中多采用送入数字系统前用十进制,送入机器后再转换成二进制数,让数字系统进行运算,运算结束后再将二进制转换为十进制供人们阅读。
二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。
我们也一样,只要学完这一小节,就能做到。
首先我们来看一个二进制数:1111,它是多少呢?
你可能还要这样计算:1 × 2º + 1 × 2¹ + 1 × 2² + 1 × 2³ = 1 × 1 + 1 × 2 + 1 × 4 + 1 × 8 = 15。
然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,***位的权值为2³ = 8,然后依次是 2² = 4,2¹=2, 2º = 1。
记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。
参考资料:
百度百科-二进制
小数怎么以二进制表示?
可以这样:首先将一个小数如:235.725的小数部分取出,即:0.725,将其乘以进制数二进制就乘以2后得到1。45,取其整数部分1为二进制小数的***项(十分位),在将小数部分0。45乘2得0。9,取其整数部分为二进制小数的第二位(百分位)0,在将其小数部分0。9乘2,得1。8,取其整数部分为二进制小数的第三位(千分位)1,取其小数部分0。8再乘2……以此类推,直到值为0或形成循环小数则停止。
二进制怎样转换成小数?
1、整数部分:
方法:用2辗转相除直到结果为1,将余数和最后的1从下向上的组合,就是我们想要的结果。
2、小数部分:
方法:乘2取整,顺序排列。
具体做法是:
用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。
然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
扩展资料
二进制数的特性:
1、如果一个二进制数(整型)数的第零位的值是1,那么这个数就是奇数;而如果该位是0,那么这个数就是偶数。
2、如果一个二进制数的低端n位都是零,那么这个数可以被2n整除。
3、如果一个二进制数的第n位是一,而其他各位都是零,那么这个数等于2^n。
4、如果一个二进制数的第零位到第n - 1位都是1,而且其他各位都是0,那么这个数等于2^n - 1。
5、将一个二进制数的所有位左移移位的结果是将该数乘以二。
6、将一个无符号二进制数的所有位右移一位的结果等效于该数除以二(这对有符号数不适用)。余数会被下舍入。
7、将两个n位的二进制数相乘可能会需要2*n位来保存结果。
8、将两个n位的二进制数相加或者相减绝不会需要多于n 1位来保存结果。
9、将一个二进制数的所有位取反(就是将所有的一改为零,所有的零改为一)等效于将该数取负(改变符号)再将结果减一。
10、将任意给定个数的位表示的***无符号二进制数加一的结果永远是零。
11、零递减(减一)的结果永远是某个给定个数的位表示的***无符号二进制数。
12、n位可以表示2n个不同的组合。
13、数2年包含n位,所有位都是一。
参考资料
二进制数-百度百科
关于二进制小数和二进制小数加法运算的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。