随机过程中的平稳过程和平稳增量过程有什么区别?
平稳增量比平稳过程,多了一点,即增量之间(Xt-Xs,Xs-X0)是相互独立的
相同的就是平稳性,一般指宽平稳,数学期望是常数,EXtXs只与时间差有关
在数学中,平稳过程(Stationary random process)或者严格平稳过程(Strictly-sense stationary,SSS)是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。这样,数学期望和方差这些参数也不随时间和位置变化。
例如,白噪声(AWGN)就是平稳过程,铙钹的敲击声是非平稳的。尽管铙钹的敲击声基本上是白噪声,但是这个噪声随着时间变化:在敲击前是安静的,在敲击后声音逐渐减弱。
独立增量过程,状态离散的平稳独立增量过程是一类特殊的马尔可夫过程。泊松过程和布朗运动都是它的特例。从一般的独立增量过程分离出本质上是独立随机变量序列的部分和以后 ,剩下的部分总是随机连续的。
什么是平稳随机过程?
在数学中,平稳随机过程或者严平稳随机过程又称狭义平稳过程。平稳随机过程是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程,即随机过程的统计特性不随时间的推移而变化,因此数学期望和方差这些参数不随时间和位置变化。
平稳随机过程的均值与时间无关,是一个常数。平稳随机过程的自相关函数只与计算时取的时间间隔有关。满足以上两点,就是广义平稳随机过程,也可以理解为各态历经性。
随机过程定义:
设随机试验的样本空间为 ,对于空间的每一个样本 ,总有一个时间函数与之对应,而对于空间的所有样本 ,可有一组时间函数 与其对应,那么,此时称此组时间函数 为随机过程 。
对于某一固定时刻 , 为时间函数在时的状态,它是一个随机变量。如果把该状态样本空间描述为状态函数的形式,那么我们依赖于时刻t就有一组这样的状态函数,我们称此组状态函数为随机过程 。
什么是广义平稳过程
信号处理中常用的弱平稳也被称为广义平稳(Wide-sense stationary,W SS)、二阶平稳或者协方差平稳。WSS 随机过程仅仅要求一阶和二阶矩不随时间变化。
一个 WSS 的连续时间随机过程 x(t) 有下述数学期望函数
1. 与相关函数
2. ***个属性表明数学期望函数 mx(t) 必须是常数。第二个属性表明相关函数仅仅与 t1 和 t2 之间的差值相关,并且可以仅仅用一个变量而不是两个变量来表示。这样,
通常可以简化为
,其中:。 当使用线性、时不变(线性时不变系统)滤波器处理广义平稳随机信号的时候,将相关函数作为线性算子是很有帮助的。由于它是轮换矩阵运算,只与两个变量之间的差值有关,所以它的特征函数是傅里叶级数复数指数函数。另外,由于线性时不变系统算子也是复指数函数,广义平稳随机信号的线性非时变处理非常易于操作--所有的运算都可以在频域进行。因此,广义平稳假设在信号处理算法中得到了广泛应用。
一种弱的多的平稳性在分析随机输入的线性系统时非常有用。这种平稳性甚至比二阶平稳性还要弱,通常称为弱平稳性或广义平稳性。如果一个随机过程满足下列条件:
(1)随机过程的期望值E[x(t)]为一常数,因此与时间变量无关,并且
(2)自相关函数Rxx(t1,t2)仅为时间差t2-t1=τ的函数;
如果条件(2)得到满足,则这样的随机过程称为自相关平稳过程。如果条件(1)得到满足,则该随机过程有***形式的平稳性,称为均值平稳。如果随机过程同时满足条件(1)和(2),则称为广义平稳随机过程。
平稳独立过程的定义
不随时间而变。平稳独立过程的特征是产生随机现象的主要因素不随时间而变。因为产生随机现象的主要因素不随时间而变,所以随机过程的统计特性不随时间推移而变——平稳过程。
通信系统原理中平稳随机过程有几类,它们之间的关系如何
回答:有两类,分别是严平稳和宽平稳过程。
其关系:
严平稳随机过程与宽平稳随机过程区别联系
(1)一个宽平稳过程不一定是严平稳过程,一个严平稳过程也不一定宽平稳过程.
例1:X(n)=sinwn,n=0,1,2,…,其中w服从U(0,2π),随机过程{X(n),n=0,1,2,…}是宽平稳过程,但不是严平稳过程.
例2:服从柯西分布的随机变量序列是严平稳随机过程,但不是宽平稳随机过程.
(2)宽平稳过程定只涉及与一维、二维分布有关的数字特征,所以一个严平稳过程只要二阶矩存在,则必定是宽平稳过程.但反过来,一般是不成立的.
(3)正态过程是一个重要特例,一个宽平稳的正态过程必定是严平稳的.这是因为:正态过程的概率密度是由均值函数和自相关函数完全确定的,因而如果均值函数和自相关函数不随时间的推移而变化,则概率密度函数也不随时间的推移发生变化.
平稳过程的概念
1)定义
设{X(t),t∈T}是一随机过程,如果对于任意的n≧1和任意的t1,t2....,tn∈T以及使t1+τ,t2+τ,...,tn+τ∈T的任意实数τ,n维随机变量(X(t1),X(t2),...,X(tn))和(X(t1+τ),X(t2+τ),...,X(tn+τ))有相同的联合分布函数,即
F(t1,t2,...,tn;x1,x2,...xn)=F(t1+τ,t2+τ,...,tn+τ;x1,x2,...,xn)
ti∈T,τ∈R,i=1,2,...,n
则称{X(t),t∈T}是严(强,狭义)平稳过程,或称{X(t),t∈T}具有严平稳性。
2)主要性质和结论
⑴严平稳过程的所有一维分布函数F(t;x)=F(x)与t无关;二维分布函数仅是时间间隔的函数,而与两个时刻本身取值无关,即
F(t1,t2;x1,x2)=F(t1+τ,t2+τ;x1,x2)=F(0,t2-t1;x1,x2)
⑵若{X(t),t∈T}是正态过程,则{X(t),t∈T}是严平稳过程的充要条件是{X(t),t∈T}位宽平稳过程。
关于平稳过程和平稳过程一定是平稳增量过程吗?的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。